Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(6): e2304743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803930

RESUMO

Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.

2.
J Am Chem Soc ; 146(1): 833-848, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113458

RESUMO

The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped ortho-benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.32% with a high open-circuit voltage (Voc) of 0.92 V, surpassing the performance of the corresponding Y6-based devices. In contrast, similarly synthesized SB16, featuring an S-shaped para-benzodipyrrole-based skeleton, yields a low PCE of 0.15% due to the strong side-chain aggregation of SB16. The C-shaped A-DNBND-A skeleton in CB16 and the Y6-series NFAs constitutes the essential structural foundation for achieving exceptional device performance. The central Tz moiety or other A' units can be employed to finely adjust intermolecular interactions. The single-crystal X-ray structure reveals that ortho-benzodipyrrole-embedded A-DNBND-A plays an important role in the formation of a 3D elliptical network packing for efficient charge transport. Solution structures of the PM6:NFAs detected by small- and wide-angle X-ray scattering (SWAXS) indicate that removing the Tz unit in the C-shaped skeleton could reduce the self-packing of CB16, thereby enhancing the complexing and networking with PM6 in the spin-coating solution and the subsequent device film. Elucidating the structure-property-performance relationships of A-DA'D-A-type NFAs in this work paves the way for the future development of structurally simplified A-D-A-type NFAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...